Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.19.21255748

ABSTRACT

Despite tremendous efforts by the international research community to understand the pathophysiology of SARS-CoV-2 infection, the reasons behind the clinical variability, ranging from asymptomatic infection to lethal disease, are still unclear. Existing inter-individual variations of the immune responses, due to environmental exposures and genetic factors, may be critical to the development or not of symptomatic disease after infection with SARS-CoV-2, and transcriptomic differences marking such responses may be observed even later, after convalescence. Herein, we performed genome-wide transcriptional whole-blood profiling to test the hypothesis that immune response-related gene signatures may differ between healthy individuals with prior entirely asymptomatic versus clinical SARS-CoV-2 infection, all of which developed an equally robust antibody response. Among 12.789 protein-coding genes analyzed, there were only six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection (n=17, mean age 34 years) relatively to those with clinical infection (n=15, mean age 37 years). All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, ALOX15), are involved in innate immune response while the first two are interferon-induced proteins. Among genes with increased expression six are involved in immune response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by interferons. Our results suggest that an intrinsically weaker expression of some innate immunity- related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a certain gene signature predicts, or not, those who will develop a more efficient immune response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, warrant further study.


Subject(s)
Embryo Loss , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.31.21250868

ABSTRACT

Molecular epidemiology has provided an additive value to traditional public health tools by identifying SARS-CoV-2 clusters, or providing evidence that clusters based on virus sequences and contact tracing are highly concordant. Our aim was to infer the levels of virus importation and to estimate the impact of public health measures related to travel restrictions to local transmission in Greece. Our phylogenetic and phylogeographic analyses included 389 SARS-CoV-2 sequences collected during the first 7 months of the pandemic in Greece and a random collection in 5 replicates of 3,000 sequences sampled globally, as well as the best hits to our dataset identified by BLAST. Phylogenetic analyses revealed the presence of 70 genetically distinct viruses identified as independent introductions into Greece. The proportion of imported strains was 41%, 11.5%, and 8.8% during the three periods of sampling, namely, March (no travel restrictions), April to June (strict travel restrictions), and July to September (lifting of travel restrictions based on a thorough risk assessment), respectively. These findings reveal low levels of onward transmission from imported cases during summer and underscore the importance of targeted public health measures that can increase the safety of international travel during a pandemic.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.272955

ABSTRACT

The worldwide SARS-CoV-2 outbreak poses a serious challenge to human societies and economies. SARS-CoV-2 proteins orchestrate complex pathogenic mechanisms that underlie COVID-19 disease. Thus, understanding how viral polypeptides rewire host protein networks enables better-founded therapeutic research. In complement to existing proteomic studies, in this study we define the first proximal interaction network of SARS-CoV-2 proteins, at the whole proteome level in human cells. Applying a proximity-dependent biotinylation (BioID)-based approach greatly expanded the current knowledge by detecting interactions within poorly soluble compartments, transient, and/or of weak affinity in living cells. Our BioID study was complemented by a stringent filtering and uncovered 2,128 unique cellular targets (1,717 not previously associated with SARS-CoV-1 or 2 proteins) connected to the N- and C-ter BioID-tagged 28 SARS-CoV-2 proteins by a total of 5,415 (5,236 new) proximal interactions. In order to facilitate data exploitation, an innovative interactive 3D web interface was developed to allow customized analysis and exploration of the landscape of interactions (accessible at http://www.sars-cov-2-interactome.org/). Interestingly, 342 membrane proteins including interferon and interleukin pathways factors, were associated with specific viral proteins. We uncovered ORF7a and ORF7b protein proximal partners that could be related to anosmia and ageusia symptoms. Moreover, comparing proximal interactomes in basal and infection-mimicking conditions (poly(I:C) treatment) allowed us to detect novel links with major antiviral response pathway components, such as ORF9b with MAVS and ISG20; N with PKR and TARB2; NSP2 with RIG-I and STAT1; NSP16 with PARP9-DTX3L. Altogether, our study provides an unprecedented comprehensive resource for understanding how SARS-CoV-2 proteins orchestrate host proteome remodeling and innate immune response evasion, which can inform development of targeted therapeutic strategies.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.29.271015

ABSTRACT

IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, remains viable and therefore potentially infectious on several materials. One strategy to discourage the fomite-mediated spread of COVID-19 is the development of materials whose surface chemistry can spontaneously inactivate SARS-CoV-2. Silicon nitride (Si3N4), a material used in spine fusion surgery, is one such candidate because it has been shown to inactivate several bacterial species and viral strains. This study hypothesized that contact with Si3N4 would inactivate SARS-CoV-2, while mammalian cells would remain unaffected. MaterialsSARS-CoV-2 virions (2x104 PFU/mL diluted in growth media) were exposed to 5, 10, 15, and 20% (w/v) of an aqueous suspension of sintered Si3N4 particles for durations of 1, 5, and 10 minutes, respectively. Before exposure to the virus, cytotoxicity testing of Si3N4 alone was assessed in Vero cells at 24 and 48 hour post-exposure times. Following each exposure to Si3N4, the remaining infectious virus was quantitated by plaque assay. ResultsVero cell viability increased at 5% and 10% (w/v) concentrations of Si3N4 at exposure times up to 10 minutes, and there was only minimal impact on cell health and viability up to 20% (w/v). However, the SARS-CoV-2 titers were markedly reduced when exposed to all concentrations of Si3N4; the reduction in viral titers was between 85% - 99.6%, depending on the dose and duration of exposure. ConclusionsSi3N4 was non-toxic to the Vero cells while showing strong antiviral activity against SARS-CoV-2. The viricidal effect increased with increasing concentrations of Si3N4 and longer duration of exposure. Surface treatment strategies based on Si3N4 may offer novel methods to discourage SARS-CoV-2 persistence and infectivity on surfaces and discourage the spread of COVID-19.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.244269

ABSTRACT

Effective and safe vaccines against SARS-CoV-2 are highly desirable to prevent casualties and societal cost caused by Covid-19 pandemic. The receptor binding domain (RBD) of the surface-exposed spike protein of SARS-CoV-2 represents a suitable target for the induction of neutralizing antibodies upon vaccination. Small protein antigens typically induce weak immune response while particles measuring tens of nanometers are efficiently presented to B cell follicles and subsequently to follicular germinal center B cells in draining lymph nodes, where B cell proliferation and affinity maturation occurs. Here we prepared and analyzed the response to several DNA vaccines based on genetic fusions of RBD to four different scaffolding domains, namely to the foldon peptide, ferritin, lumazine synthase and {beta}-annulus peptide, presenting from 6 to 60 copies of the RBD on each particle. Scaffolding strongly augmented the immune response with production of neutralizing antibodies and T cell response including cytotoxic lymphocytes in mice upon immunization with DNA plasmids. The most potent response was observed for the 24-residue {beta}-annulus peptide scaffold that forms large soluble assemblies, that has the advantage of low immunogenicity in comparison to larger scaffolds. Our results support the advancement of this vaccine platform towards clinical trials.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.271635

ABSTRACT

SARS-CoV-2 causes disease varying in severity from asymptomatic infections to severe respiratory distress and death in humans. The viral factors which determine transmissibility and pathogenicity are not yet clearly characterized. We used the hamster infection model to compare the replication ability and pathogenicity of five SARS-CoV-2 strains isolated from early cases originating in Wuhan, China, in February, and infected individuals returning from Europe and elsewhere in March 2020. The HK-13 and HK-95 isolates showed distinct pathogenicity in hamsters, with higher virus titers and more severe pathological changes in the lungs observed compared to other isolates. HK-95 contains a D614G substitution in the spike protein and demonstrated higher viral gene expression and transmission efficiency in hamsters. Intra-host diversity analysis revealed that further quasi species were generated during hamster infections, indicating that strain-specific adaptive mutants with advantages in replication and transmission will continue to arise and dominate subsequent waves of SARS-CoV-2 dissemination.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.269175

ABSTRACT

Key steps of viral replication take place at host cell membranes, but the detection of membrane-associated protein-protein interactions using standard affinity-based approaches (e.g. immunoprecipitation coupled with mass spectrometry, IP-MS) is challenging. To learn more about SARS-CoV-2 - host protein interactions that take place at membranes, we utilized a complementary technique, proximity-dependent biotin labeling (BioID). This approach uncovered a virus-host topology network comprising 3566 proximity interactions amongst 1010 host proteins, highlighting extensive virus protein crosstalk with: (i) host protein folding and modification machinery; (ii) membrane-bound vesicles and organelles, and; (iii) lipid trafficking pathways and ER-organelle membrane contact sites. The design and implementation of sensitive mass spectrometric approaches for the analysis of complex biological samples is also important for both clinical and basic research proteomics focused on the study of COVID-19. To this end, we conducted a mass spectrometry-based characterization of the SARS-CoV-2 virion and infected cell lysates, identifying 189 unique high-confidence virus tryptic peptides derived from 17 different virus proteins, to create a high quality resource for use in targeted proteomics approaches. Together, these datasets comprise a valuable resource for MS-based SARS-CoV-2 research, and identify novel virus-host protein interactions that could be targeted in COVID-19 therapeutics.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.270819

ABSTRACT

The adenosine analogue remdesivir has emerged as a frontline antiviral treatment for SARS-CoV-2, with preliminary evidence that it reduces the duration and severity of illness1. Prior clinical studies have identified adverse events1,2, and remdesivir has been shown to inhibit mitochondrial RNA polymerase in biochemical experiments7, yet little is known about the specific genetic pathways involved in cellular remdesivir metabolism and cytotoxicity. Through genome-wide CRISPR-Cas9 screening and RNA sequencing, we show that remdesivir treatment leads to a repression of mitochondrial respiratory activity, and we identify five genes whose loss significantly reduces remdesivir cytotoxicity. In particular, we show that loss of the mitochondrial nucleoside transporter SLC29A3 mitigates remdesivir toxicity without a commensurate decrease in SARS-CoV-2 antiviral potency and that the mitochondrial adenylate kinase AK2 is a remdesivir kinase required for remdesivir efficacy and toxicity. This work elucidates the cellular mechanisms of remdesivir metabolism and provides a candidate gene target to reduce remdesivir cytotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL